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INITIAL VALUE PROBLEMS OF THE RAYLETGH-TAYLOR INSTABILITY TYPE

Roy A. Axford

ABSTRACT

Rayleigh-Taylor instability initial value problems are set up in
terms of the velocity potential formulation for inviscid fluids, the
stream function formulation for viscous fluids, and the DNS formula-
tion, which is applicable to both inviscid and viscous fluids. Explic-
it solutions of these initial value problems are obtained for half-
spaces, double half-spaces, thick and thin sheets, and stratified media
for both time-independent and time-dependent imposed accelerations.

1. INTRODUCTION

This report is the first of a contemplated
series that will deal with Rayleigh-Taylor insta-
bility phenomena. Our objective is to provide a
systematic, expository development of Rayleigh-
Taylor instability, together with new analytic and
quantitative results.

Emphasis is given to alternative formulations
and methods of solution applicable to Rayleigh-
Taylor instability initial value problems. We con-
sider the existence of stability or instability and
follow the actual time response of interfaces re-
gardless of stability or instability occurrence.

Work pertaining to Rayleigh-Taylor instabil-
ity phenomena for the 90-yr period from 1883 to
1973 is contained in Refs. 1-45., Additional ref-
erences are cited in Refs. 1-45 and in NASA Liter-
ature Search No. 12616 for the period from 1964 to
July 28, 1970.

A direct consideration of the equations of
continuity and motion and the introduction of a
velocity potential might be described as the stand-
ard starting points for the determination of the
motions of free surfaces or interfaces between dis-
similar media when accelerations perpendicular to
the mean positions of these surfaces are imposed.

However, the velocity potential formulation is of

little value in Rayleigh-Taylor instability initial
value problems for viscous fluids.

The last paragraph of Sec. 2 in a paper by
Bellman and Pennington7 states: !'Note that in this
present Section one cannot satisfy the condition
that the velocities be zero when t = 0. Apparently
because of the linearization performed, one obtains
no motion at all if one attempts to satisfy this
condition."

The resolution of this paradox was arrived at
independently, first by Carrier and Chang18 and
later by me, by treating the initial value problem
for viscous fluids by introducing a stream function
formulation in linearized analysis. The stream
function formulation for Rayleigh-Taylor instability
initial value problems involving viscous fluids is
presented ab {nitio in Sec. 2.1 from alternative
viewpoints, which uncover its underlying physical
interpretation.

In Sec. 2.3 we introduce the divergence Navier-
Stokes (DNS) formulation. To my knowledge, this
method has not been previously applied to obtain
explicit solutions of the initial value problems
that arise in the consideration of Rayleigh-Tayloxr
instability phenomena. The DNS formulation is sim-
pler to use for Rayleigh-Taylor instability initial

value problems involving viscous fluids than the

stream function formulation because only second-order,



as contrasted with fourth-order, differential oper-
ators are encountered. DNS formulation applica-
tions to initial value problems are presented in
Secs. 3 and 4, together with the stream function
and velocity potential formulations, where explicit
solutions are deduced.

Here we report only the Eulerian descriptions
of hydrodynamics and the two-dimensional Cartesian

geometries,

2. ALTERNATIVE FUNDAMENTAL FORMULATIONS

We shall consider various ways of setting up
the field equations found to be useful in the anal-
ysis of Taylor instability initial value problems.
Boundary conditions are introduced at the point
where specific problems are solved.

In the ith fluid region the Navier-Stokes
equation for an incompressible fluid with a con-

stant viscosity is

v,

i ¥ F o_ T >
oy 3p— * pi(Vi grad)V = Oi¢ - grad P; * uiV Vi ’

(2-1)

and the continuity equation is
div ¥, =0 . (2-2)

These equations hold in an accelerating reference
frame that moves toward the Y-axis of the inertial
frame w1th an acceleration 8- The body force per

unit mass ¢ in Eq. (2-1) is given by

+ ~
$=-(g+*g)di , (2-3)

where g is the acceleration due to gravity (g > 0).
In Eq. (2-3) the imposed acceleration £ is posi-
tive when the two reference frames move in the
positive Y-direction relative to one another, but
is negative for motions directed toward the nega-
tive Y-direction. Eqs. (2-1) and (2-3) are valid
for both time-independent and time-dependent im-

posed accelerations.

2.1, Stream’ Function Formulation

If the region subscript i is dropped, the con-
tinuity equation, Eq. (2-2), for two-dimensional
Cartesian geometry is

» (2'4)

the x-component of the Navier-Stokes equation is

2 2
du du du 13 pf3%u 37u
3t T Yax T Vay T T e o <8x§ ¥ 8y2> ’ (2-5)

and the y-component of the Navier-Stokes equation is

2 2
v v v 13p ufd3v 3%
+u_+v_—__. _g*.;_._._..g._
ot ax 3y p 9y p <3x2 8y2> ?

(2-6)
where we have set
gr=g+g . (2-7)
Equations (2-4)-(2-6) hold for nonlinear analysis.

In linear analysis the equation-of-motion components
are taken in the following form:

2 2
du_ _13p u(f37u 3% -
3t " pax <8x * ayz) (2-8)
and

2 2
v 13 u (8 v 3 v)
T osh-e i) . (2-9)
It ) 55 p axz ayz

Obtaining solutions for Eqs. (2-4), (2-8), and
(2-9) can be reduced to the computation of a scalar
function. The corresponding reduction for the non-
linear case, i.e., for Eqs. (2-4)-(2-6), is carried
out in Eqs. (2-20)-(2-34).

Consider a stream function %% such that the x-

component of the velocity vector is given by
(2-10)

and the y-component of the velocity vector is given
as
a2

VE - .

9xady (2-11)

The reason for taking the stream function as
Enter-
ing Eqs. (2-10) and (2-11) into Eq. (2-4) shows that
the continuity equation is satisfied identically.

rather than just ¢ is apparent in Eq. (2-13).



In terms of the stream function the y-compo-

nent of the equation of motion, Eq. (2-9), becomes

3 4 4
ER =0 _E._L - pg* -y .i.qi_ + ._a_IP_ . (2_12)
dy ataxdy 8x33y 3x3y3

Integrating this equation with respect to y from

y = 0 to y = y produces for the pressure field

32 32
p(x,y,t) = p(x,0,t) + plyrae V(X,¥,t)-555¢ V(x,0,1)

3 3 3
- Og*)' = u[‘a_‘g(x’)"t) - _a—'%}'(x’o’t) + 3 wz(x:y:t)
39X 9x axdy
%y
- ————E{X,o,t) (2-13)

Ixdy

The stream function was chosen as Y rather than
to get this form for the pressure distribution.
In terms of the stream function the x-compo-

nent of the equation of motion, Eq. (2-8), becomes

4 4 3
%P' = “< azw 7" L%) o2 wz (2-14)
x 3x 3y 3y atdy

Entering the pressure field from Eq. (2-13) into
Eq. (2-14) yields

23 23
P 5 V(X,y,t) + 7 V(%,y,t)
atdx Jtdy

2? 2?
B—F V(x,y,t) + 2 =55 V(X%,Y,1)
Ix 9x"dy

4 3
? ) )
—w(x,y.t)]- (x,0,t) + p

ay? o 3tax

+

7 (x,0,t)

?? ?
13} __4 ¢(X,°:t) + 2. 2 q’(x’oit) . (2'15)
ax x“ 3y

3

If we now require that the scalar function § satis-
fy

3 33 u 34
] P(x,y,t) + ] Y(x,y,t) = = 4 Y(x,y,t)
Itdx 3ty P | ax
34 34
22wyt 2o veyn| L (2-16)
3x 3y 3y

Eq. (2-15) splits into this partial differential

equation, together with

3 3 24
$(x,0,8) = p ——5 Y(x,0,8) ~ u| 7 ¥(x,0,t)
dtax x
34
+ —5— Y(x,0,1) (2-17)
9x“oy
Integrating Eq. (2-17) with respect to x gives
a2
P(x,0,t) = p(0,0,t) + p w=— ¥(x,0,1)
a3 a3
- H _—3' \()(X,O,t) + 2 W(X,O,t) (2"18)
ax Ix3y
With Eq. (2-18) the pressure distribution of Eq.
(2-13) takes the form
32
P(x,y,t) = p(0,0,t} + 0 === Y(x,y,t) - pg*y
a3 a3
- U N3 W(X,)’,t) + 2 \P(X’Y’t) (2-19)
9x 3x3y

In this formulation the scalar function ¢ is
determined as a solution of the fourth-order partial
differential equation of Eq. (2-16), subject to ap-
propriate boundary conditions for each specific
problem. The velocity vector's x-component is found
with Eq. (2-10), its y-component is computed with
Eq. (2-11), and the pressure distribution is deter-
mined from Eq. (2-19).

These results can also be derived by starting
from the vector form of the Navier-Stokes equation.
For this second derivation, we shall retain the non-
linear terms to obtain the nonlinear counterpart of
the partial differential equation of Eq. (2-16).
Because the body force per unit mass given in Eq.

(2-3) is derivable from the potential,

Q=g*y , (2-20)
that is,

>

¢ =-grad & , (2-21)



and because the vector identities

. > >
(V + grad) ¥ = grad <Y§!> -V Xecurl V (2-22)
and
27 .o >
V®V = grad div V - curl curl V (2-23)

hold, the Navier-Stokes equation for an incompressi-

ble fluid can be written as

v > > VeV
Pwr--pVXcurl V= - pgrad\——/-p grad Q
at 2
-+
- grad p - ¥ curl curl V (2-24)
Let the vorticity vector a be defined by
- >
w=curl Vv , (2-25)
then Eq. (2-24) becomes
v~ VeV
v = - yvi.
[} 3t - p VXw = p grad ( 5 ) p grad Q
>
-~ grad p - ycurl w . (2-26)

Because the curl grad operator acting on a scalar
produces zero identically, taking the curl of Eq.
(2-26) yields

3 - > > +
p 3T w - p curl (VXw) = - 4 curl curl w .(2-27)

With the vector identities
curl (VXG) = (a-grad) V- (V-grad) w+ Vdiv o

-0 divV

(2-28)
and
curl curl ® = grad div ® - Vza s (2-29)
Eq. (2-27) simplifies to
3+ ) - -> 2> > >
0 5% +p (Vegrad) w = u V' + p (wegrad) V (2-30)

because div curl V = 0, and because the fluid is
assumed to be incompressible.

We now specialize the vorticity equation, Eq.
(2-30), to two-dimensional Cartesian coordinates.
By representing the velocity vector in terms of the
stream function wy, as in Eqs. (2-10) and (2-11),

the vorticity vector becomes

3 3\ A
®=curl V= - _§Eﬂ_ + 2_% k . (2-31)
- ax" 3y dy
Also,
-+ > 3 o2, 2 (29 29 * -
(wegrad) V = [- 5;-V P k (1 &t 5;)] v=o
(2-32)
because k + i = 0and k * 3 = 0, and
V-grad =u %§-+ v %; . (2-33)

Consequently, the kth component of Eq. (2-30) re-

duces to

2 2 2
9 2 37y 3 37y 3 3 g2
° 3tay Vi e <3y2 3x ~ Bxdy 3y | 3y v

(2-34)

Equation (2-34) is the nonlinear counterpart of Eq.
(2-16); however, if the nonlinear terms are dropped,
Eq. (2-34) becomes

3 42
QEV

gl
]
=
<
<N
N
Lg

. (2-35)
By integrating this with respect to y and setting
the arbitrary function of x and t equal to zero, we

find from Eq. (2-35) that

o3Py = vy (2-36)
which is the same as Eq. (2-16).

2.2 Velocity Potential Formulation

The representation of the fluid velocity vector
as the gradient of a scalar function, the velocity
potential, has been used widely in Taylor instability

analysis. However, this approach is confined to
irrotational flows of inviscid fluids.



Let ¢ be the velocity potential such that the

velocity vector is
V=-grad¢ . (2-37)

The continuity equation for an incompressible fluid
then becomes

div V = div grad ¢ = V26 = 0 ; (2-38)

that is, conservation of mass requires that the ve-
locity potential satisfy Laplace's equation. Con-
sider the form of the Navier-Stokes equation given
in Eq. (2-24), namely,

W vy

p 3¢ - P V X curl V = - p grad (!%!) - p grad @
- grad p - u curl curl v . (2-24)

Because curl grad ¢ = 0, entering Eq. (2-37) into

Eq. (2-24) produces

> >
- p grad %’-= -p grad(v;v) - p grad £ - grad p

(2-39)

Integrating this relation gives the pressure dis-

tribution in the form

3 1
p=F() +p 5%—- 7 P grad ¢ + grad ¢ - R , (2-40)

where F(t) is an arbitrary function of time. Com-
bining Eqs. (2-20) and (2-40) for two-dimensional

Cartesian geometry yields

3
P(X,Y,8) = F(1) + 0 oL (x,y,t) - pgty

2 2
-3 [%(x.y,t)] + [gcx,y,t)] S e R3))

This form of Bernoulli's equation can be used in
nonlinear Taylor instability analysis together with
Laplace's equation for the velocity potential. In
linear analysis Eq. (2-41) for the pressure field
is simplified by neglecting the nonlinear terms;
that is, the relation

p{x,y,t) = F(t) + p -g—% (x,y,t) - pg*y (2-42)

in used in linear analysis.

The pressure distribution can also be obtained
by the following arguments for linear analysis of
inviscid fluids. The linearized Euler equations

of motion are

du_ _13p -
3t T~ p 9x (2-43)
and
v _ _13p ]
i (2-44)
Because
=3 -
v 3y (2-45)
Eq. (2-44) becomes
3 3% _13p -
" 3y 3t - o3y - g* . (2-46)

Integrating this equation from y = H to y = y gives

P(X,)’:t) - P(X,H,t) =P %_f' (XJY’t) -9 _g%' (X,H,t)

- pg*(y - H) . (2-47)
The x-component of the Euler equation of motion,
Eq. (2-43), now becomes

5 2%

5= OGHE) = 0 5 (GHE) (2-48)
which integrates to

P(x,H,t) = p(o,H,t) + p %% (x,H,t) - 0 %% (o,H,t) .

(2-49)

With Eq. (2-49), the pressure field of Eq. (2-47)
reduces to

P(X,y,t) = P(O;H,t) - P g_f (O’H’t) +p 'g;ﬁ (X,)’,t)

- pg*(y - H) . (2-50)



This is the same as Eq. (2-42), with the identifi-
cation

F(t) = p(o,H,t) - 0 3L (o,H,t) + og*H . (2-51)

2.3. DNS Formulation

The DNS formulation is a recasting of the equa-
tions of continuity and motion that results by tak-
ing the divergence of the Navier-Stokes equation.
This formulation simplifies the solution of linear
Taylor instability initial value problems for vis-
cous fluids in that only second-order rather than
fourth-order differential operators are encountered,
as in the stream function formulation discussed
above. The DNS formulation can also be used in the
Taylor instability amalysis of inviscid fluids.

We introduce a scalar function P related to
the pressure by

P = p + pg*y (2-52)
The x- and y-components of the Navier-Stokes equa-
tion in two-dimensional Cartesian geometry assume

in terms of this scalar function the following

forms:
2 2
du du du 1 93P  u (8 u 3 u>
—t U ™+t Ve B o — e b | ——  —
ot ax oy paIx p sz ayz
(2-53)
and
2 2
X Yy Pdy P \yx dy
(2-54)

Adding the results of operating on Eq. (2-53) with

%; and on Eq. (2-54) with %;-produces

a_(a_u+a_v 3udu  3vav o, 9v3u
9t \9x 9y 9x 3x  9dy dy 9x 3y

(2-55)

By taking into account the continuity equation for
an incompressible fluid, it follows that Eq. (2-55)

reduces to

3°p . 3°p du du _ 9v 3V 3u 3v)_
ax2+ay—2+p(—}--rx+-§)-; )’+23)'H) o .

In nonlinear analysis this equation is imagined to
be solved for the scalar function P in terms of the
derivatives of the components of the velocity vec-
tor. The result is then entered into Eqs. (2-53)
and (2-54) which, accordingly, become a set of coup-
led nonlinear partial differential equations for the
two components of the velocity vector.

In linear analysis simplification is achieved
When the nonlinear terms are
dropped from Eqs. (2-56), (2-53), and (2-54), we have

to consider

in the following way.

2 2

a—%+a—%=o , (2-57)
9x Ay
N 2 2
Ju 1 9P u{o°u 3 u
SN R £ T (2-58)
3t pIx P (axz 3y2>
and
2 2
v 139P yufa3’v 29V
A L LA Al (2-59)
it pady p (axz 3y2>

Consequently, after determining the scalar function
P, by solving Laplace's equation, the two components
of the velocity vector can be found by solving the
two second-order, time-dependent, inhomogeneous dif-
fusion equations given in Bqs. (2-58) and (2-59).
This may be contrasted with the stream function for-
mulation where the scalar function ¥ must be deter-
mined by solving a fourth-order partial differential
equation, namely, Eq. (2-16), and where the compo-
nents of the velocity vector are found subsequently
by differentiation.

When the DNS formulation is applied to Taylor
instability initial value problems involving inviscid
fluids, irrotational flows are not necessarily assum-
ed as they are in the velocity potential formulation.
In linear analysis, with the DNS formulation Laplace's
equation for the scalar function, P is solved regard-
less of whether or not the fluid is taken to be



inviscid or viscous. The velocity vector components
are then found by integrating Eqs. (2-58) and (2-59)
with y = 0 for inviscid fluids and with u # 0 for
viscous fluids. Accordingly, the DNS formulation
provides a more direct, unified, systematic basis
for solving Taylor instability initial value prob-
lems than either the stream function formulation or

the velocity potential formulation.

3. SOLUTIONS OF TAYLOR INSTABILITY INITIAL VALUE
PROBLEMS FOR INVISCID FLUIDS

3.1. Solutions for Two-Fluid, Double Half-Space,
Single-Interface Configuration with Constant
Acceleration

3.1.1.

General Result with Surface Tension
and an Arbitrary Initial Interface
Perturbation

In this section we show the effect of surface
tension Ts on the time response of the interface
between two semi-infinite, inviscid fluids. The
initial perturbation of the interface is regarded
as arbitrary in shape until specific examples of the
general solution are worked out.

In the velocity potential formulation we want

to solve
2%, 2%,
2 (X:}',t) + 2 (er1t) =0 (3'1)
9x y

in the upper region, y > 0 and - ® < x < «, and

3% 3%

22 (x,y,t) + 22
Ix dy

(x,y,t) = 0 (3-2)

in the lower region, y < 0 and - © < x < @, 1In the
linear approximation the solutions are subject to

the kinematic condition

e = - 40,0 (3-3)

on the interface and on the boundary conditions of

continuity of the y-component of the velocity vector

namely,
3 1]
1 2
3y {x,0,t) = 3y (x,0,t) 3 (3-4)

and of pressure continuity, namely,

3¢2 3¢1
— - * = —
pz 5t (x,0,t) 0, 8 n(x,t) Pl 3t (x,0,t)
azn
- p; g*n{x,t) - T_—5 (x,t) . (3-5)
1 s ax2

This initial value, boundary value problem can
be solved directly with a multiple integral trans-
form technique. A Fourier cosine transform will be
used on the x-coordinate, and the Laplace transform
will be taken on the time coordinate for_time-
independent accelerations.

Let the Fourier cosine transform of the veloc-
ity potential and of the interface position be de-
fined by

9; (k,¥,t) =~/ﬂ dx cos(kx) ¢, (x,y,t), (i =1,2)
0
(3-6)
and
n(k,t) =f dx cos(kx) n(x,t) , (3-7)
0
respectively.

The Fourier cosine transforms of Eqs. (3-1)-(3-5)

are

2
3 2 B s o
y‘bi(k’)':t) -k ¢1(k:)',t) = o’ (1 = 1:2) > (3'8)

5 3%,
’a_t n(k:t) = - 3‘;,— (ktoxt) » (3'9)
30y 3,
V (k,O,t) = sy—' (k,O,t) ’ (3'10)
and
39, 3,
* - PR,
Py 5;—-(k,o,t) - 0, g*n(k,t) = p) = (k,o,t)
- oy gk, ) « TR (k.Y . (3-11)
From Eq. (3-8) it follows that
-ky
6, (k,y,t) = A (k,t) e ,y >0 (3-12)



and
- ky
¢2(k,}':t) = Az(k;t) e s Yy <0 . (3-13)
With Eqs. (3-12) and (3-13) the Pourier cosine

transforms of the kinematic and boundary conditions

become

) )
pz 5? Az(k:t) = pl 3{ Al(k’t) + (pz = pl) 8*n(k.t)

+ Tskz nk,t) , (3-14)

Az(k!t) = - Al(k't) ’ (3-15)
and

g;-n(k,t) =k Akt . (3-16)

By eliminating Az(k,t) from Eqs. (3-14) and (3-15)

we obtain

Pa*Py Py*0y

2, [ (ppm0p) T
(k,t) =} - ———— g* n(k,t) . (3-17)
Equations (3-16) and (3-17) comprise a set of two
first-order, ordinary differential equations for
the two Fourier cosine transforms that appear in
them. An equivalent second-order ordinary differ-
ential equation for the Fourier cosine transform of

the interface perturbation is

2

a™n
_— (k,t) = [_
at?

S

3
(pz—pl) . Tk
P2*P) Py*P

] nck,t) . (3-18)

We solve Eqs. (3-16) and (3-17) by introducing
the following Laplace transforms

nek,s) =f dt e 5 nex,t) (3-19)
0
and
A (K,9) =f dt St A (R, T) (3-20)
0

The Laplace transforms of Eqs. (3-16) and (3-17)
are

s n(k,s) - n(k,0) =k Al(k,s) (3-21)

and

2
(py-p,) o - Tk
Po*Py Pa+0)

s Al(k,s) - Al(k,o) = [- ]n(k,S).

(3-22)

where n(k,0)} is the Pourier cosine transform of the
initial perturbation on the interface. Upon setting
Al(k,o) = 0 for a system at rest initially, we find
from Eqs. (3-21) and (3-22) that

nck,s) = s n(k,0) - (3-23)
I B M LB
P2*0y 020y

We define a cutoff wave number ks by

(pl_OZ)g*
kg =\ /—-——Ts— , (3-24)

and introduce the quantities

py-p 2

o? (k) = 22 g*k[l - (‘;—) ] , for kS k_
01%05 s

(3-25)

and

PINCE

py-P 2
1 zg*k[(L) _1],fork>k
P,+P k s
172
(3-26)

The inversion theorem for the Fourier cosine trans-

form,
n(x,s) =%f dk cos(xk) n(k,s) (3-27)
0

in accordance with Eqs, (3-25) and (3-26), splits
into the sum of two integrals; that is, the Laplace
transform of the interface displacement can be
written as



K
n,s) = 3/ S dk cos(xk) n(k,0) —Sr—
m b s°-a“ (k)

4

ENN)

f dk cos(xk) n(k,o0) 2—52— . (3-28)
1 sT+L (k)
S

Inversion of this Laplace transform back into the
time domain yields the following expression for the
space~time dependence of the interface displacement

for a time-independent acceleration,

k
nix,t) = —12;/ 5 dk n(k,0) cos(xk) cosh [o(k)t]
0

0
+ %f dk n(k,0) cos(xk) cos [Z(k)t]. (3-29)
ks
This result is valid for an initial interface per-
turbation that is an arbitrary even function of the
x-coordinate.
3.1.2.

For example, if the initial interface pertur-

An Initial Cosine Perturbation Result

bation is a cosine distribution, namely,

n{x,o) = a cos(kox) R (3-30)
so that
- r _
n(k,o) = a, f dx cos(xk) cos (xko) =a,3 8(k ko) s
0
(3-31)

then Eq. (3-29) becomes

k

n(x, t) =% S dk a, g §(k-k ) cos(xk) cosh [o(k)t]

0
+ 2| daka T §k-k) cos(xk) cos [Z(K)t]
L o 2 [¢] )
S

(3-32)

If ko < ks’ this simplifies to

n(x,t) = a cos(kox) cosh [o(ko)t] , (3-33)
but if ko > ks’ Eq. (3-32) reduces to
n{x,t) = a, cos(kox) cos [E(ko)t] (3-34)

3.1.3. An Initial Hump Perturbation Result

As a second example, consider an initial inter-

face perturbation of the shape

aoc2
n(x,o) = 2 2 H (3'35)
x“+c
the Fourier cosine transform of which is
o«
n(k,0) - aoCZ/ dx cos(kx) _ ac % e'Ck (3-36)
x“+c

0

Here the space-time response of the interface to a

constant acceleration is given by

k
nix,t) = aoc“/~ S dk e_Ck cos(xk) cosh [o(k)t]

0
xR
+ aoc./r dk e'Ck cos(xk) cos [Z(K)t] (3-37)
k
s
3.1.4. An Initial Groove Perturbation Result

As a third example, we consider the space-time
response of an initial perturbation that is a v-

shaped groove defined by

m(x—xo), if 0< Ix| <€ Xy
n(x,o0) = ,

o, if [x] > X,

(3-38)

where m = yo/xo. The Fourier cosine transform of

the initial interface perturbation is

x
n(k,o0) =J/‘ % dx cos (kx) m(x-xo)
0

= - ';‘—2 [1 - cos(kx )] (3-39)



Consequently, the space-time response of the inter-
face for a constant acceleration is given by

2 ks 1-cos(kx°)
nix,t) = - T mf dk -——k—z— cos (xk) cosh[o(k)t]
0

o«

l-cos (kx )
2 gk [————°] cos(xk) cos[E(k)t]

T k2
ks (3-40)

In the 1limit of vanishing surface tension we

have

1im k + o
T+o

, (3-41)

that is, the cutoff wave number becomes infinite.
In this limit Eq. (3-40) simplifies to

3.2. Solutions for a Fluid Sheet with Constant Accel-

eration
3.2.1. General Result with Surface Tension and
Arbitrary Initial Perturbations on the

Two Surfaces.

The Taylor instability initial value problem
for an inviscid fluid sheet will be solved by means
of the velocity potential formulation. We want to

solve Laplace's equation for the velocity potential

2 2
24 vty + 22yt = 0
9x Yy

(3-46)

in the region defined by the inequalities nz(x,t:)
Sy<H+ nl(x,t) and - @ < x < », where nz(x,t) is
the position of the lower surface, and n1(x,t) is

the position of the upper surface. For this problem

we write the pressure field in two ways, namely,

A 1-cos(kx_)
n{x,t) = - %mf dk [TP-—

] cos(xk), cosh [co(k)t] s (3-42)

0
where the definition
pi-p
o2t = -2 g%k (3-43)
° P1*P2

has been used. Let k = uz; then, because

1 - cos(kx,) = 2 sin? (kx /2) (3-44)

the result contained in Eq. (3-42) can be written

in the alternative form,

P(x,y,t} =p +op %%-- pg*y - %-grad ¢ - grad ¢
(3-47)

and

P(x,y,t) =py *+p %% - pg*(y - H) - %—grad ¢egrad ¢ ,
(3-48)

(-]
2
_ lém XU
nlx,t) = - Tfi‘i cosh [0, (wHt] cos(u?) sin® < > >
0 u’ ° 2

(3-45)

10



where P, is the pressure at the mean position of
the lower surface, and Py is the pressure at the
mean position of the upper surface. The pressure

continuity boundary conditions allowing for surface

tension are

32
TS y nl (x,t)
N p(x,H + nl’t) =Py - an 21372 (3-49)
1+ [Wl(x’t)] }
at y = H + nl(x,t), and
a2
Tg ;;5 n,(x,t)
p(x,n,,t) - (3-50)

=P
an 2,3/2 [
1+ W(X,t)

at y = nz(x,t). With Eq. (3-48) it follows that
Eq. (3-49) becomes

3 * 1 . -
P3¢ (XH + np,t) - pg*n,(x,t) - 5 grad ¢ + grad ¢ =

52
T, — n. (x,t)
s axz 1

an, 2y372°
1+ W(X,t)

and entering Eq. (3-47) into Eq. (3-50) produces

) - (3-51)

3 1
P32 (x,M,0t) - pg*n,(x,t) - 3 grad ¢ - grad ¢

a2
Ts g;g'nz(x,t)
= . (3-52)

anz 213/2
1+ W(X,t)

On the upper surface the kinematic condition is

D

3 [y -H- nl(x.t)] =0 , (3-53)

where the substantial time derivative operator is

given by

9 3 J
ﬁ-+u§+vw (3-54)

q|°

Consequently, Eq. (3-53) reduces to
VOOH + n,t) = o (x,0)
? 1’ at 17’

+ uOGH + 1 ,1) 2=, (x,1) (3-55)

Likewise, the kinematic condition on the lower sur-
face is found to be

)
v(x,n,,t) = g—t ny(x,t) + ulx,n,,t) 5= n,(x,t). (3-56)

In the linear approximation the pressure bound-

ary conditions in Eqs. (3-51) and (3-52) simplify to

2

3% (x,H,t) *(t)-—Tanl(t) (3-57)
D at sll, - pg nl X, - s axz X, -
and

2
an

5
o3 (xi0,0) - o, (x,0) = T, Al SORRIICD)

respectively. Also, the linear kinematic conditions

from Eqs. (3-55) and (3-56) are

et = v = - 2 wny  (3-59)
and

St = vixon = - Lo, (3-60)
respectively.

The linear initial value, boundary value prob-
lem presented by Eqs. (3-46) and (3-57)-(3-60) can
be reduced to 2 system of four, first-order ordinary
differential equations. Let the complex Fourier
transforms of the velocity potential and interface

displacements be defined by

1 Z gy oikx
oky,t) = = | dx e™ox,y,0) (3-61)
/21 ,/”
and
n; (,0) =‘/;=fw ax e (0, (= 1,2) . (3-62)
m

11



The complex Fourier transforms of Eqs. (3-46) and
(3-57)-(3-60) are as follows:

2
2 ey, - Kotky,t) =
3y

1
(=

(3-63)
p 32 (,H,1) - pgrn, (k,t)

.2
= KT (kt) ,  (3-64)

3¢ - 2
p ﬁ' (k,O,t) - Og*ﬂz(k,t) = -k Tsnz(k:t) > (3'65)

any 20

3 () = - 3 (i, (3-66)
and

3 _ 3¢

'a_t nz(kst) = - a_y' (k,O,t) . (3'67)

The general solution of Eq. (3-63) is

8Ck,y,0) = A (k0 + Ak, e0e ™ (3-68)

With this general solution for the complex Fourier
transform of the velocity potential, the complex
Fourier transforms of the boundary and the kine-
matic conditions given in Eqs. (3-64){3-67) reduce
to a system of four first-order, ordinary differ-
ential equations for nl(k,t), nz(k,t), Al(k,t), and
Az(k,t). This system can be written in the form

n, (k,t) n, (k,t)
n, (k,t) n,(k,t)
%? = A , (3-69)
Bl(k,t) Bl(k,t)
B, (k,1) B, (k,t)
where
B,(k,t) = k A;(k,1), (i=1,2) , (3-70)

and the matrix A is given by

12

0 0 ek e KH
0 0 -1 1
5’ 2
A = —A— -e = 0 0 . (3-71)
2
S N B S
T TA A

In Eq. (3-71) we have introduced the following def-

initions:

A =2 sinh(i) = 8 - K (3-72)
T .2
2 = T i )
HOE kg*<1 .5 g*) , (3-73)
and
T .2
2049 = sk -
0,20 = kg*(l -3 g*> ) (3-74)

The general solution of the first-order sys-
tem of Eq. (3-69) can be determined by the method
of Laplace transforms. If we introduce the Laplace

transforms defined as

n; (k,3) =f dt e™%n; (k,1), (i = 1,2) (3-75)
0

and

B, (k,s) =f dt e'Stsi(k,t), (i=1,2) , (3-76)
0

then the Laplace transform of Eq. (3-69) is

nl(k,S) n, (k,0)
n,(k,s) n,(k,0)
(sI-A) = » (3-77)
Bl(k,s) Bl(k,o)
Bz(k,s)/ Bz(k’o)



where I is the unit matrix. The solution of Eq.
(3-77) for the complex Fourier-Laplace transforms

of the interface displacements yields

nl(k,o) 0 ekH -e"kH
nz(k,o) s 1 -1
K 5
Bl(k,o) x 02 s 0
ekH
B2(k,o) - % 02 0 s
n, (k,s) =
det (s I - A) (3-78)
and
s nl(k,o) ekH -e_kH
) nz(k,o) 1 -1
012
el Bl(k,o) s [
2
%
-+ Bz(k,o) o s
n,(k,s) =
det (s I - A) )
(3-79

The determinant of the matrix s I - A in Eqs. (3-78)
and (3-79) has the value

4
det (s 1 -A) =s*+ 2557 - (kg? {l ) (§—> } )

3
(3-80)
where we define the cutoff wave number as
K2 = P8t (3-81)
s T
s
and the function ¢ as
2
. cosh(kH) v [k _
¢ = oy 8 (& (3-82)

This function is even in the Fourier transform vari-
able k.

obtained with Eq. (3-80), has two real roots and two

Also, the polynomial det(s I - A) = O,

imaginary roots for s if the wave number is less than
the cutoff wave number; that is, if k < ks’ and four
imaginary roots for s if k > ks. Suppose that

0<kc< ks’ then the two imaginary roots of this

polynomial are * iR1 with

7 ) 1/2
) 2 2
R, -{c \ﬂ v (g?) [1 ( >]} RS
S

and the two real roots are * R2 with

/2
R, ={-C+\£2 + (kg*)? [1 - ({;—)]} .

When ks < k < = the four imaginary roots of the poly-

X1r

(3-84)

nomial are % iR3 and * iR4 with

1/2

4
R ={c +\/c2 - (kg*)z[G—s) - J} (3-85)
and

7 1/2
Ry ={¢ \ﬁz - (kg*)z[(’;—s) - 1J}

If the fluid sheet is assumed to be at rest
initially, so that Bl(k,o) = 0 and Bz(k,o) = 0, then

the complex Fourier-Laplace transform of the space-

(3-86)

time response of the upper surface of the fluid
sheet that comes out of Eq. (3-78) is found to be

_ s 2 2 cosh(kH)
n, (k,s) = m{nlfk’°) [S % sinh(kﬂ)]

2
262

+ ny(k,0) —= (3-87)
By inverting the Laplace transform of this equation

with the Bromwich integral, namely,

. Cc+io
1

nlck,t) = m ds e

ts

nl(k:s) ’ (3'88)

the complex Fourier transform of the upper surface
time response is obtained. This inversion entails

the application of the Cauchy residue theorem and

the evaluation of the residues at the four first-order
If the

wave number is such that 0 < k < ks’ we find that

poles, which are the zeros of det(s I - A).

13



the complex Fourier transform of the response of

the upper surface is given by

cos(th) [ 2 2 cosh(kﬂ)]
—L " I (k,0) [R? + o2 SoshlkH)
2(Rf 5 { 1 1 2 sinh(kH)

ny (k,t)

2

262 cosh(R,t) 2
- n,(k,0) ——=¥+ ————4n, (k,0) [R
2 A 2(R§ . 0 1 2

2
20
2 cosh(kH) 2
- 9, —__sinh(kH)] + nz(k,o) -+ } . (3-89)

tiowever, if the wave number is such that ks < k <,
the complex Fourier transform of the response of the

upper surface is

cos(R,t) 2 2 cosh(kH)
ny (k1) = ——2(R§ 5 {nl(k»°) [Rs T 9% —‘sinh"(kﬂ)]
202 cos(Rat) 2
T Ty N [R“
b4

202

+ o %}] n, (k,0) Tz} : (3-90)

Similar results can be found for the complex
Fourier transform of the time response of the lower
surface of the fluid sheet. The actual space-time
response of the interfaces then follows by using the
inversion theorem for the complex Fourier transform,
namely,

R A -ixk .
n; (x,t) = /2_“f dk e n(k,t) o, (i=1,2)

(3-91)

3.2.2. Results for Initial Cosine Perturba-
tions on the Two Surfaces with the
Same Wave Numbers and with a Specified
Phase Difference

In the limit of zero surface tension,

where k_ > ®, T+ 0, R > kg*, and R% + kg*, the

1
complex Fourier transform of the upper surface re-

sponse as given by Eq. (3-89) simplifies to

14

n, (k,0)
N (k,t) = sinh(KH) [cos(t vKg")

= 2 sinh (k)

+

cosh(t vkg" ]+ cosh(kH) [cos(t vkg")

n,(k,0)

- cosh(t VEg*)]} + m [cosh(t VEK*)

- cos(t vkg®)] (3-92)
The corresponding result for the complex Fourier
transform of the response of the lower surface is

found by inverting the Laplace transform

n,(k,0)

n,(k,s) = {53 2 sinh(kH)

2 sinh(kH) [s® - (kg")4)

+ kg* 2s cosh(kH} - 2 kg* snl(k,oi},(3-93)

obtained from Eq. (3-79) in the limit of zero sur-

face tension. This inverse Laplace transform is

given by
n, (k,0)
ny(k,t) = T sinh (k) [cos(t vkg*) - cosh(t vkg*)]
n,(k,0)
+ m{sinh(k}{) [COSh(t VEg*)
+ cos(t vkg¥)] + cosh(kH) [cosh(t vkg*)

cos(t /Eg*)]}- . (3-94)
If the upper surface has an initial perturba-

tion of the form

(3-95)

nl(x,o) = a cos(kox +€) ,

1

whereas the lower surface has an initial perturba-
tion
nz(x,o) = a, cos(kox) R (3-96)

then the complex Fourier transforms of the two ini-

tial surface perturbations are given by



n, (k,0) =\/§a1 [eiE G(k + ko) + o7l G(k - kq)]
(3-97)

and

n,(k,0) = \/gfaz [G(k . ko) + 6<k - ko)]

By substituting Eqs. (3-97) and (3-98) into Egs.
(3-92) and (3-94), we obtain the following results

(3-98)

for the space-time responses of the upper and lower
surfaces of an inviscid fluid sheet to a constant
acceleration. The upper surface moves in accordance
with

a, cos(kox + e) cos(t /Eog*)

n, (x,t) =
1 1 o 2Kof
-2koH
i a cos(kox + e) cosh(t /Eog*)e
1 - o 2Kof

a, cos (kox) [cosh (t /ko—g*'> - cos (t /koT)] e-koH

+
1 - e-ZkOH

(3-99)
whereas the lower surface moves as

a, cos (kox) cosh (t »’Eog*)
~2KH
e

n,(x,t) =
2 1 -

a, cos kox + €

+ II—(W)—H—-Z [cos (t W) - °°5h(t/Fog_*)]e‘koH
-e

-2koH
2, cos(k x) cos(t vk g*)e i
o ()

o-2KH

(3-100)
1 -

The first terms on the right-hand sides of Egs.
(3-99) and (3-100), which are valid in the limit of
zero surface tension, are what one would expect on
the upper and lower surfaces in the limit of a very
thick fluid sheet. The remaining terms in these
two equations represent interaction effects between
the two surfaces that are significant in affecting

the time response of thin fluid sheets.

3.3. Solutions for Time-Dependent Accelerations

3.3.1. Forms of Time-Dependent Accelerations
Considered

Here we calculate the space-time response of
the interface between two inviscid fluids for spec-
ified time-dependent accelerations. For the time

interval 0 € t < T the acceleration will be

2r-2

gr(t) = g/ @-— %) s (3-101)

where r is a parameter that varies the shape over
the time interval. The corresponding impulse AV
is given by

T g8, T
AV = dt g*(t) = 5r -1 ° (3-102)
o
so that in terms of the impulse we have
2r-2
g*(t) = (2r - 1) ﬁ—"(l - -;-) ) (3-103)

Accordingly, only shape parameters such that r >
1/2 are of interest. A constant acceleration cor-
responds to r = 1. If 1/2 < r < 1, the accelera-
tion increases monotonically over the time inter-
val, and if r > 1, the acceleration decreases mono-
tonically. As the shape parameter increases the
form of the acceleration becomes more and more
peaked,

3.3.2. DNS Formulation Applications to the

Double Half-Space Problem with Time-
Dependent Accelerations

In the linear approximation the DNS formula-
tion for two half-spaces of inviscid fluids re-

quires that we solve

azpl azpl
+—t=0 , (3-104)

9x Jdy
ou oP

1. 1 %1
T o % (3-105)

and

v 1%

1.1 ;
® e A (3-106)
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in the upper region for which y > 0 and -» < x < o,

and
2%, azpz
L+ —2=0 , (3-107)
3x ay
%y e o A 2 (3-108)
at Py ax
and
v ap
2 1 2
T 9_2 W (3-109)

in the lower region for which y < 0 and -» < x < o,
These solutions are subject to the interface kine-

matic condition

st , (3-110)

ML) <y (x,0,1)

the continuity of the y-component of the velocity

vector

vl(x,o,t) = vz(x,o,t) s (3-111)

and, in the absence of surface tension, pressure

continuity in the form

Pl(X,O,t) - pl g*(t) n(x:t) = PZ(X,O,t)

- Py g*(t) n(x,t) (3-112)

To solve this initial value, boundary value
problem, we introduce the following Fourier cosine

transforms

Pi(k,}',t) =f dx cos (kx) Pi(x’}':t),(i =1,2),
(o]
(3-113)

v;(k,y,t) ‘/ dx cos(kx) v, (x,y,t),(i = 1,2),

° (3-114)

and

16

n(k,t) *f dx cos(kx) n(x,t) (3-115)
)

The Fourier cosine transforms of Eqs. (3-104),
(3-107), (3-106), (3-109), (3-110), (3-111), and
(3-112) are, respectively,

2
L op k) KB Gy, t) =0, (3-116)
ay
32 2
N3 Pz(k,)',t) -k pz(k’)'lt) =0 , (3'117)
3y
v oP

1 1 1
oy (k:)'nt) = - a5 (k,)’,t) ’ (3'118)
at Py dy
v P

2 1 2
e (k’)’:t) - = (k,)':t) B (3'119)
ot Py dy
2not) = v, (ko) (3-120)
vl(k,o,t) = vz (k,o0,t) , (3-121)

and

P, (k,0,t) = P, (k,0,8) + (o} - P,) g*(t) n(k,t)
(3-122)

For y > 0 the solution of Eq. (3-116) of interest is

P (k,y,t) = A (k,t)e™, (3-123)
and for y < 0 that of Eq. (3-117) is
P,(k,y,t) = A,(K,t) kY (3-124)

Entering Eqs. (3-123) and (3-124) into Eqs. (3-118),
(3-119), and (3-122) produces



v

1 k -k
e (Ky,t) = p—l-Altk,t)e Y, (3-125)
v
2 =k ky
3t (Kyst) = - 0 A,(k,t)e™ (3-126)
and
Aj(k,t) = Ay(k,t) + (p) - p,) g*(t) n(k,t)
(3-127)

Differentiating Eqs. (3-120) and (3-121) with re-

spect to time gives

32 Bvl

at_z n(k,t) = x= (k,0,t) (3-128)
and

3V1 sz

3t (kso,t) = 5= (k,0,t) (3-129)

With Egs. (3-125) and (3-126) these last two equa-

tions become

2
a__g k,t) = %- A, (k,1) (3-130)
at 1 ,
and
o
= .2
A,k t) = - > A, (K, 1) (3-131)

With Eq. (3-131) it follows from Eq. (3-127) that

A (k’t) P - p
1 1° P
= g*(t) n(k,t) ,

51 Py * P

(3-132)
and combining Eqs. (3-130) and (3-132) yields

2 -p

3 P1 = P _
— n(k,t) - PN kg*(t) n(k,t) = 0 (3-133)
at PL* P

as the governing equation for the Fourier cosine
transform of the interface displacement for an arbi-
trary time-dependent acceleration when surface ten-
sion is negligible. We seek solutions of Eq. (3-133)
for the acceleration function of Eq. (3-101), that

is, of
2 p, - P 2r-2
3 1 2
22t - o2k (1-F) Ak =0
ot 1 2
(3-134)
Let
T=1-7 (3-135)
and
Py - P
2 1 2 .2
B* = kg —= T s (3-136)
0Pt 0
then Eq. (3-134) becomes
32 2 _2r-2
——E-n(k,r) - B T nk,t) =0 (3-137)
T

To solve Eq. (3-137) we introduce the new de-
pendent variable Y(k,T) by

n(k,7) = /T Y(k,T) , (3-138)
so that
2
12 E——-Y(k,T) + T 2—-Y(k,'r)
2 ERs
9T
- (% + B2 rzr) Y(k,T) = 0 (3-139)
With the new independent variable
z =1 , (3-140)

Eq. (3-139) becomes Bessel's equation, namely,
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2
22 §—-i-Y(k,z) + 2z %—-Y(k,z)
3z T

T

82 22 1
_ + —=}Y(k,2z) =0 . (3-141)
2 2
4r

Explicit solutions of Eq. (3-141) depend upon
whether or not pl > p2 or py < pz. These two cases
will be considered in turn. If p1 > Pys let

Py - P
2 .2 17 P2 2
NER TR T (3-142)

Here the general solution of Eq. (3-141) is
Y(k,z}) = c, I (B £)+<:I z
: 1L Cer)m2 1 (5 2) , o143
2r

+T
2r

provided that 1/2r is not a positive integer. Con-
sequently, the general solution of Eq. (3-137) is

Tr ‘T."r
n(k,t) = VT [cl Il_ B, r—>+ c, 1_ 1 B, T)] s
2r 2r

(3-144)
when pl > Py- ) )
However, if p1 < pz, let B™ » B~ where
Py, - P
2 _ 2 1.2
B” = kgo B;_:_BI T . (3-145)

The general solution of Eq. (3-141) is now taken as

. z z .
Y(k,2) = ¢f J (B_ r) re d (za~ r) , (3-146)

2r 27

provided that 1/2r is not a positive integer, and

the general solution of Eq. (3-137) is

T Tr
- T T
n(k,'l') T C:s Jl <B_ 1'_> + (‘,4 J_ ; <B_ }—->
2r T
(3-147)

when pl < pz.
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The arbitrary constants €1s €3s Cq» and c4 in
the general solutions in Eqs. (3-144) and (3-147)
can be evaluated in terms of the initial conditions,
which, in view of Eq. (3-135), occur at T = 1, If
n(k,o0) is the Fourier cosine transform of the ini-
tial interface perturbation, then

nk, t =0 =nk, T=1) . (3-148)

Consequently, if we set R = 1/2r, Eqs. (3-144) and
(3-147) evaluated at T = 1 give

<y IR (B+/r) + ¢, I-R (B+/r) = n(k,0) (3-149)

and

Cy JR(B_/r) +cy J_R(B_/r) = n(k,0) . (3-150)

Also, we have

1
) =& g = -2 &nam
(3-151)

so that

%; nk, t=1) = -T nt(k,o) . (3-152)

Substituting Eqs. (3-144) and (3-147) into this last

equation gives
L 1 T k
<y IR (/1) + ¢, Ip (B+/r) = - E:' ﬂt( +0)
N M] (3-153)
2T
and
1 1 T
cg Jg (B/x) + ¢, J o (B /T) = - B n, (k,0)

+ “—2(,‘;—”] ) (3-154)

The solution of the algebraic set of Eqs.
(3-149) and (3-153) is



B
1 ' + T
Sl il LY <r—> n(k,0) + 5= [n (k,0)

g2, ()
2T -R

- (3-155)
and
B
Ll (Zx r
¢ = IR<r> n(k,0) - 3= [n(k,0)
+
n(k,o) B,
£ —_ -
+ 3T ] IR - ) (3-156)
where the Wronskian WI is given by
wo=r (o) o (2) By o (e
I R\r -R\r -R\r R\r
S S &
= - 2 sin (2:) ) (3-157)

The solution of Eqs. (3-150) and (3-154) is

1 L B_ B— T
s =ﬁ{ Il noy + 0 (= g_[nt(km)

. ngk,0) ]]
2T

(3-158)

and

B B
- 1 ! - - —T
ok [ (E) e () E e

+”_2(u)-]] , (3-159)
T
where the Wronskian WJ is
B\ , /B . [B_ B_
Yo =k \v ) Jr\v/ - T/ IR \T
_ 2r . kil
= - E sin (E) (3—160)

Therefore, from Eqs. (3-144), (3-155), and
(3-156), the Fourier cosine transform of the inter-

face displacement is given by

(3-161)

when pl > Pye However, if p1 > 0,5 then the Fourier

cosine transform of the interface displacement is

1 B B T
n(k,T) = y{_j l“(k’°) [J-R<§;> IR < an >
, [B B r .
() sa >] s [”t“"“
B B_ .r
]2 () ()
A <:—'> IR (B-rtr>] ’ :

In Eqs. (3-161) and (3-162) the quantity T depends

+

(3-162)

upon the time as shown in Eq. (3-135). By applying
the inversion theorem for the Fourier cosine trans-
form, the space-time response of the interfaces is
found to be

nex,t) = %/m dk cos(x,k) n(k,T) , (3-163)

o

where Eq. (3-161) is used for n(k,t) if ) > Pys
and Eq. (3-162) is used if oy < Py

Explicit results for the Fourier cosine trans-
form of the interface displacement at the time
t = T can be determined by evaluating Eqs. (3-161)
and (3-162) at t = 0.

lowing limits are required:

For this evaluation the fol-

B
lim /T I, |-+ =0
1\r
™0 =

2r

(3-164)
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and

-1/2
lim /T (B" r) = (®./21) ) 3-165
v I S C ol B J s R V2 s (3-165)

where ' is the gamma function of the indicated ar-

gument

B
. - T} _
lim vT J1 (—r T ) =0

(3-166)
0 o7
and
B B -1/2r
. - .ry _ \"-/2r _
mﬁ"_ 1_<r_T) T - m - 8167

2r

These limits are obtained directly by using the
series representations of the Bessel functions.
Taking into account Eqs. (3-164) and (3-165) we
find from Eq. (3-161) that

m (Et) v (B
51:?12’—) T - 2 ‘n(k’o) 1 (?t)
T T

1
1-5%

n(k,T) =

B
nk,0){ T +
* [“t(k’°) t ]§+ I (r_)l (3-168)
2r

is the Fourier cosine transform of the interface
displacement at t = T if Py > 0y The correspond-
ing result for Py < e, is

B \I"5F
(z) ~ ;
ntom) < — o 3 ()
Sin(?r_) I‘(l - —2;) 57

B
+ [nt(k,o) + D%ﬁl]%_— 3 (r—‘) (3-169)
2r

The classical Taylor theory results for a con-
stant acceleration can be recovered from Egs.
(3-168) and (3-169) as a special case for r = 1

20

because g*(t) = £, from Eq. (3-101) if r = 1, PFor

example, if r = 1, Eq. (3-169) simplifies to

B /2 1/2 \
n(i,T) = DyfZos—{ntk,0) J) (8) + [n,(k,0)

2z
N ”—U;TQ] g—Jl () (3-170)
-2

However,

3, ) = VZ[WB_ sin(B) (3-171)

2

J' (B) = —2—-[cos(8 ) - 1l sin(B )]

1 B =\/m N Ry

2

(3-172)

and

r(%) = /i (3-173)

When these last three equations are entered into
Eq. (3-170), the result is

n(k,T) = n(k,0) cos(B_) + 3 n,(k,0) sin(B) ,

(3-174)

where nt(k,o) = 0 for a system at rest initially.
Combining Eqs. (3-163) and (3-174) produces

n(x,T) = %/W dk cos(xk) n(k,0) cos(B)  (3-175)

[}

for a system at rest initially. If the initial per-
turbation is a cosine distribution, entering Eq.
(3-31) into Eq. (3-175) gives

n(x,T) = %f dk cos(xk) a 7 8(k - k) cos(B)
[o]

(3-176)

that is,

n(x,T) = a, cos(kox) cos[B_(ko)] s (3-177)



which, with Eq. (3-145), becomes

Py, - P
_ / 2 1
n(x,T) = a, cos(kox) cos<T kogo W) (3-178)

Accordingly, the classical Taylor theory result is
recovered as a special case of the more general re-
sults obtained above by means of the DNS formula-
tion solved for time-dependent accelerations of the
form given in Eq. (3-101).

3.3.3. Motions of the Surfaces of a Fluid

Sheet Induced by Time-Dependent
Accelerations

We now consider the Taylor instability initial
value problem for an inviscid fluid sheet for time-
dependent accelerations of the form given in Eq.
(3-101).

determining a set of coupled, second-order differ-

This problem can be disposed of by first

ential equations for the Fourier transforms of the
displacements of the upper and lower surfaces of
the fluid sheet.

With Eq. (3-68) for the Fourier transform of
the velocity potential, Eqs. (3-66) and (3-67) be-

cone
%E (k) =k [- A Ck,teM . Ak, 0)e M (3-179)
and
2on,060) = k- A GGt + Ak, )] (3-180)

Differentiating Eqs. (3-179) and (3-180) with re-
spect to time and solving the results for the time

derivative of the A's produces

d 1 32
3t A 06 = seraay |- g;i’“l(k’t)

2
+ oM 3—2 n,(k,t) ] (3-181)
3t
and
(k t) —1—_. - .ai (k t)
at Ay 2k sinh(Kd) | 2 ALY
T 5 0y (K, t)] (3-182)
at?

Entering Eq. (3-68) into Eqs. (3-64) and (3-65)

gives

K2 -kH
5o A Gte « 2 A (K, t)e

2
-840 1) = Xm0t (3-183)
and
FEAKD + 32 A 008 - g5 () ny (k)
2
= - T, N,k (3-184)
Combining Eqs. (3-181)-(3-184) yields
cosh (kH) 32 Lt - 32 o
" sinh(d) | 7N 51nh(kH) L)
3
- * e -
= |kg*(t) + 5 T | Nk, t) (3-185)
and
1 32 cosh(kH) 3°
T SRR 2 ny (k,t) + Sinh(KH) |, "2(k t)
3
= | kg*(t) - p—Ts ﬂz(k,t) (3-186)

A more convenient form is obtained by solving Eqgs.
(3-185) and (3-186) explicitly for the second deri-
vatives. When this is done the following set for

the Fourier transforms of the surface displacements

is found:
QE_ (k,t) + cosh (kH) kg*(t) + EE.T (k,t)
Nyt sinh(kH) | <8 o s| M

3
- EEE%TEET‘[kg*(t) --%— Ts] n,y(k,t) = 0 (3-187)

and
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1 K3 32
Sinh(kD kg*(t) + o To | k,t) + ;:7 n,(k,t)

3
cosh (kH k -
" sinh(Kd [kg*(t) - p_Ts] nyk,t) =0

(3-188)

Explicit analytic solutions of this set can be
determined in terms of Bessel functions for time-
dependent acceleration functions of the form given
in Eq. (3-101) when the surface tension vanishes.
Differential operators that are more complex than
the Bessel operator arise if the surface tension is
nonvanishing. If the acceleration is sinusoidal in
time, Eqs. (3-187) and (3-188) comprise a vector
Mathieu equation.

To solve Eqs. (3-187) and (3-188), with the
acceleration function of Eq. (3-101), when the sur-
face tension vanishes, we introduce the new inde-

pendent variable as defined in Eq. (3-135) so that

2
3 cosh (kH) 2  2r-2
52 D Ry ke T T ()

kgo T2 TZr-Z

T SstmRgay M = 0

(3-189)

and

kg, T2 T2 2

3
sinh (KH) Yo N, (k, )

_ cosh(kH) kgo T2 TZr-Z nz(k,r) =0

Sinh(kH) (3-190)

If we introduce the new dependent variables Yi(k,T)
as given by
n, (k,T) = /'?Yi(k.T) s (1 =1,2) , (3-191)

and the new independent variable z = Tr, then Egs.
(3-189) and (3-190) assume the form

22

2 2 2

Y Y By 2z
2 sz g -y, + QRO Ly
9z 4r r
Bf z2 S
- e ¥, = 0 (3-192)
r” sinh(kH)
and
2 2
B, z 2
1 23 ] 1
- Y + 2" =Y, + 2 =Y, - —Y
r? sinh(iH) ! a2 2 %2 4202
2 2
By z
cosh (kH 1 -
TSty "z 270 o (3-193)
where
2 _ 2 _
B = kg T (3-194)

Let Fl and Fz be two linearly independent

solutions of

2
zza—g+zg—F—%F+uzzzF=0 , (3-195)
9z Z 4r
and let G1 and G2 be two linearly independent solu-
tions of
23% . % 1 2 2
2"~ 4+ z277-—5G-VvV 2°G=0 (3-196)
2 -} 2
9z 4r

Then the general solutions of Eqs. (3-195) and
(3-196) are

Y, =c, P, +c, F, +¢c, G, +c, G (3-197)

and

Y2 = S1 [cl F1 + c2 le + S2 [c3 G1 + c4 62] »
(3-198)

where the ci's for 1< i € 4 are arbitrary constants,
and provided that

(3-199)



(3-200)
and
H=vs= Bl/r

(3-201)

The basis functions required for Eqs. (3-197) and
(3-198) are

Fl = {l_ (vz) , (3-202)
2r

F2 = J_ 1 (nz) , (3-203)

2r

G1 = ?l_ (vz) , (3-204)

2r
and
G2 =1 1 (vz) , 7(3-205)

2r

where standard notations for Bessel functions were
used.

The arbitrary constants in the general solu-
tions of Eqs. (3-197) and (3-198) can be ascertain-
ed by satisfying the initial conditions placed on
the surface displacements. For a system at rest

initially, the initial conditions are

9 i =

a0 | =0, (=12 , (3-206)
because t = 0 corresponds to T = 1, and

n o1 [ =k, (1=1,2) , (3-207)

where the right-hand side of Eq. (3-207) contains

the Fourier transforms of the initial displacements.

In terms of R = 1/2r, the application of Eq. (3-206)

shows that

B, J‘; (B /1) + % I (B/T)
c,=-2cC

1 0 1 (3-208)
Bl J_R (Bl/r) + E.J‘R (Bl/r)

and

B, 11; (8,/1) + % I, (8,/1)

c, = -2¢ . 1
B1 I__R (Bllr) 5 I_R (Bl/r)

3 (3-209)

Satisfying the initial conditions in Eq. (3-207)

produces the following two results:

' 1
.. [Bl J g B/T) + 5
17 B W] (52 - sl)

3 g B/ (52 my0

- n,(k,0)| (3-210)
and
'® Ly (s,
c =[311-11(1/”“? -R(lr)] [-s n. (k,0)
3 Bl wlI (S2 - Sl) 11
+n2(k,0)] , (3-211)
where the two Wronskians are defined by
B B B B
S A D S A I ) (_1)
WIJ‘JR(r)J-R(r) JR(r)J-R T
T i
= - gf sin (Zr) (3-212)
and
B B B B
() e () - e (B 1 (B)
wu“IR(r) I g (r S Ie\s/) Rr\7
_ 2r . i R
= - ;EI sin (Zr) (3-213)

Consequently, the solutions of Eqs. (3-189) and
(3-190) for a fluid sheet that is at rest initial-

ly are
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“:/i_k'ﬁ) B [SZBZI;:;O)(S; 7-12;]1()’0)] B [ IR (; Tr) J:R (z_l) - IR (:—1 Tn) Jl'l (':—1)] * % [JR (:_1 TI‘) IR (i_l)
- IR (:_1 "r) IR (i_l)] * Blazlb?::))(s; Tzs(ll(),O)] By [IR (i_l Tr) I (i—l) - Ig (i_l Tr) I (;1“)]

B B B
1l (Bom 2 () 1 (B) )
*2 [IR (r T) I-R(r I-R r T r ] (3-214)

"
il ool [ () () (2 5 ()] 1) (9
) ] ol [ () () ()
STAER PRE LR )

These last two results give the Fourier transforms The values of the Fourier transforms of the

of the motions of the upper and lower surfaces of a displacements of the upper and lower surfaces can be
fluid sheet for arbitrarily specified initial sur- determined at t = T by using the limits given in
face perturbations. The space-time response of the Eqs. (3-164)-(3-167) and the Wronskians from Egs.
surface motions is obtained from Egs. (3-214) and (3-212) and (3-213). Taking the limits of Eqgs.
(3-215) with the inversion theorem for the Fourier (3-214) and (3-215) as T = 0 yields the following
transform once the Fourier transforms of the ini- two results:

tial surface displacements have been calculated.

K,T) = " (fe) S, n, (k X B, J (81) L (Bl) S, n,(k
ny (k1) (5, - 8, B, sin(7®) T(I-R) 2 M0) - ny(k,0) 1 1By Jp N5 + 2 3 \ T/ |+ [- 8, ny(ke0)

+ nZ(k,O)] [”1 Iy (Bl) RN (:—1)” (3-216)

and
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Tr(RBl) 1-R

(82 - Sl) B1 sin(mR) T(1-R)

n,(k,T) =
B B
‘1 1 1

' "2“"”] [Bl 'r (r_) "7 (r)” :

Using the Fourier transform inversion theorem in
conjunction with Eqs. (3-216) and (3-217) produces
the spatial dependence of the displacements of the
upper and lower surfaces at t = T for arbitrary

initial surface perturbations.

3.3.4. Responses of the Interfaces of a Three-

By 1. (B
51|52 My ks0) - ny(k,0) | | By Jp ('r_) *3 I\ /| * 52|51 ny(ks0)

(3-217)

Region Composite Domain to Time-
Dependent Accelerations

A class of solutions of the Taylor instability
initial value problem will be obtained for a three-
region composite domain with two interfaces. We
seek the space-time response of the interfaces for
time-dependent accelerations of the form given in
Eq. (3-101).

In the velocity potential formulation it is

necessary to solve Laplace's equation

(i=1, 2, 3 (3-218)

2 z - ’

in Region (1) defined by the inequalities H + N
<y <w®and - » < x < ® in Region (2), N, <y<H
Ny - < x < »; and in Region (3), - ®» < y < n,
- @ < x <« That is, we are dealing with a fluid
sheet imbedded between two other fluids both with
semi-infinite extent.

In the linear approximation the kinematic
boundary condition on the upper interface between
Regions (1) and (2) is

3 3
MY = - e HY (3-219)

and that on the lower interface between Regions
(2) and (3) is

S = - 5 gt (3-220)

The continuity of the y-component of the velocity

vector on the upper interface leads to

&0 tenn = & e (3-221)

oy

whereas the same condition on the lower interface is

g—y ¢,(x,0,t) = g—y ¢3(x,o,t) (3-222)

Pressure continuity requires that

3 9
pz R ¢2(x,Hlt) - pl '5? ¢1(X,H,t)

2
3
* (py - Py g%(1) ny(x,t) - T,y ) n, (x,t)

(3-223)

on the upper interface, and

3 2
ps 'a—t ¢3(X,O,t) = pz 5—{ ¢2(X,O,t)

2
d
+ (Pg - 0,) g*(t) nylx,t) - T, g?nz(x,t)

(3-224)

on the lower interface, where s is the density of
the ith region. We will assume that the system is
at rest initially and that the arbitrary initial
perturbations of the two interfaces are specified.

The resolution of this initial value, boundary
value problem can be accomplished by deriving a set
of two coupled ordinary differential equations for
the Fourier transforms of the two interface dis-
placements, which is then solved for specified
time-dependent accelerations. The Fourier trans-
forms of the three velocity potentials satisfy
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52 2
25 8, y,t) - K2 9 (y,t) =0, (=1, 2, 3)
(3-225)

To ensure bounded solutions at infinity we take

solutions of these equations as

6, (ky,t) = A (k,t) o, (3-226)
&y,t) = Ay,t) e v A &, (3-227)
and

b5(Ky,t) = A (k,t) e (3-228)

The conditions that the y-component of the velocity

vector be continuous on the two interfaces lead to

A (k1) o K Ay (K, t) e _ Ay (K, t) e (3220

and
A4(k,t) = - Az(k,t) + As(k,t)

(3-230)

When differentiated with respect to time the kine-
matic conditions on the two interfaces reduce to

2

) ) -kH
- nl(k,t) = k pry Al(k,t) e (3-231)
ot
and
2 L2
5;5 nz(k,t) = - at 4(k t) (3-232)

Also, the interface pressure continuity conditions

become

~-kH

-kH )
P 3% (k t) e =P, [5?'A2(k’t) e

+ §_A sk, t) e ] - [(pz - py) g*(t)

+ T k2] ny (k,t) (3-233)

26

and

Ps %;-A4(k,t) =P, [a Ay(k,t) + at Az (k, t)]

+ [c93 -0, gr(8) + T, kZ] nytk,t) + (3-234)

Solving Eqs. (3-229) and (3-230) for A2 and A3 and
entering the results into Eqs. (3-233) and (3-234)

produces

o
i P2 -ZKH) 3
P at Ap(k,t) e = B, [(1 te 3¢ Akst)

+ 2 3,0 t)] [cpz - b)) 8*(t)

+ Ty kz] n(k,t) (3-235)
where Ao = - 2 sinh(kH) and
0. A (k,t) = = [z e AL(k,t)
33t M4
N R W (S t)] [(p, - py) g*(8)

T, k2] n, (K, t) (3-236)
Resolving these last two relations for A1t and A4t
and combining the results with Eqs. (3-231) and
(3-232) gives a set of two ordinary differential
equations for the Fourier transforms of the dis-
placements of the two interfaces. This set reads

as follows:

2

& oni,t) + [p -p
at 1 DAO 3 2

- (py + py) e'ZkH] [k(o2 - 0) 8*(t)

3 202
+ T | n (k1) - EK‘ k(py - py) g*(t)

3] .
+ T, K ] e n,(k,t) = 0 (3-237)



and

-kH
292 e 3
- —— - *

el (IR HORERE S LT

+ éf_ k,t) - - +
52 N2t oA |P1* P2
t [¢]

- oy - Py e’Zk“] [(p3 - £,) kg*(t)

3 =

+ TSz k ] nz(k,t) =0 (3-238)
In these last two differential equations we use the
definition

2
1 K 2 KH ( -2kH)
D = Z~7 [plp3 e Ao + pz e l+e

(o]
2 -kH -2u?]
- 492 e - (ol + 93) Py Ao (1 + e
(3-239)

Solutions of Eqs. (3-237) and (3-238) can be
obtained by a method similar to that used for Egs.
(3-192) and (3-193). The procedure now discussed
will be more general than that used previously in
that it is applicable to all forms of time-dependent
accelerations.

Obtaining solutions of Eqs. (3-237) and
(3-238) for arbitrarily specified time-dependent
accelerations can be reduced to finding the solu-
tions for simpler differential equations for the
basis functions in terms of which the solutions of
these equations can be expressed. Let the func-
tions Fl and Fz be two linearly independent solu-
tions of

2
ar, u2 kg*(t) F=0 ,

(3-240)
at?

and let G1 and G2 be two linearly independent solu-

tions of

2
45V kgr(t) G =0
dt

(3-241)

Let s i=1, 2, 3, and 4 be four arbitrary con-
stants; then the general solution of Eqs. (3-237)
and (3-238) in vanishing surface tensions can be

written in the form

nl(k,t) =c Fl *c, F2 + Cqg G1 +cy G2

(3-242)

and

nz(k,t) = S1 [cl F1 +c, F2] + S2 [CS G1 +c, GZ] B
(3-243)

provided that the following conditions are satis-

fied. The constant uz is a root of the quadratic

4

2
ue _ _ -2kH]
W+ 5r ‘(03 - 0)) [01 +p,-(p -0y) e

- (py = py) [03 -0y - (py + p) e'ZkH]}

(p, - 0;) (P - 9,)
2 1 3 2 {4p2 e~2kH
OINES

+ [93 - Py = (P, *+ Pg) e'ZRH] [pl * 0,

p,) e_ZkH]l =0 .

- (o (3-244)

The constant v2 is a root of the quadratic obtained
from Eq. (3-244) by replacing uz with -vz. The

constant S1 is given by either

2 -2kH
- WDA + (p, - py) [03 - Py - (py +pg) € ]

kH

S1 -
(3-245)

or
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S

2 _ e—kH
. - 20, (°p - #y)
1

R (03 - pz) [ol +p, - (91 - 92) e'ZkH] '

(3-246)

The constant 82 is given by either

2 qu
5w DA + (pz - °1) Ips - Py (pz * °3) ¢ ]
2 -
20, (g - °z) e
(3-247)
or
-KH
S - - 20, (°2 - °;) e

(3-248)

The four arbitrary constants that appear in
the general solutions for the Fourier transforms of
the interface displacements contained in Egs.
(3-242) and (3-243) can be determined in terms of
the initial conditions. For example, for a system

at rest initially, the arbitrary constants satisfy

c1 Fl° + <, F2° + c; Glo + c4 G20 = nl(k,o),(3—249)

5111 Fro * 2 on] * S, [°3 G0 * ¢4 G2o]

= n,(k,0) (3-250)
1 Flto * €2 Fato * 3 Cleo * C4 Gppo = 0 » (3-251)
and
5 [°1 Flto * 2 F2to] *+5, [cs Clto * 4 GZto]

=0 . (3-252)
In these last four relations the subscript o indi-
cates that the basis functions and their deriva~

tives with respect to time are to be evaluated at

28

2 ~ZkHT"
2 VA« (93 - pz) [91 +p, - (pl - pz) e ]

t = 0. From Eqs. (3-251) and (3-252) it follows
that

F
¢y = - F1t° (3-253)
2to
and that
G
c, = - G1t° (3-254)
2to

Entering Eqs. (3-253) and (3-254) into Eqs. (3-249)
and (3-250) and solving the results for the con-
stants c; and Cq produces

L Fa 5, ny(0) - (k0]

1 (Sz - S1) (F2to Flo = F20 F1to)

(3-255)

and

.. Greo [- §; ny(k,0) + nz(k,O)]
3 (SZ - Sl) (G2to 10 = G2 Glto)

In view of Eqs. (3-253)-(3-256) the solutions con-
tained in Eqs. (3-242) and (3-243) for the Pourier

transforms of the interface displacements become

(3-256)

(F2to F1 - Flto Fz)
(FZto Fio " Flto F20)

[s, nyai0) - myxi0)]
h (Sz B Sl)

. (EZto €1 - G140 Gz)
(GZto Glo - Glto GZo)

n, (k,t) =

|- 5, nyxi0) + nytx,0)]

=)

(3-257)

and



(FZto Fl 7 Flto F2)
n,(k,t) =
2 (F "~ Flto ony
5, |5, my(0) - nyx,0)]
(27%)

(GZto 6, - G10 Gz)
(GZto 6o - G1to G20)

5, [ 8 n 0,00 + my(x,00)

R .

The results obtained in these last two rela-

2to F1o

+

(3-258)

tions are valid regardless of the actual time var-
iations of the acceleration. For each particular
functional'dependence of the acceleration upon time,
the basis functions required for the solutions
found in Eqs. (3-257) and (3-258) are determined as
solutions of Eqs. (3-240) and (3-241).

results for the basis functions are included in

Explicit

Table 1 for both constant accelerations and for
time-dependent accelerations of the form given in
Eq. (3-101).

4.  SOLUTIONS OF TAYLOR INSTABILITY INITIAL VALUE
PROBLEMS FOR VISCOUS FLUIDS

Solutions of the Taylor instability initial
value problems are worked out for half-spaces of a

viscous fluid, sheets of viscous fluids, and double

half-spaces of viscous fluids. Both the stream
function and the DNS formulations discussed in Sec.
2 are used to solve these problems.

4.1. Solutions for a Half-Space Configuration with

Constant Acceleration

4.1.1. Application of the Stream Function

Formulation

As shown in Sec. 2.1 we want to solve

3
p 3= VP = Wiy (4-1)
subject to appropriate boundary, kinematic, and
initial conditions. In the linear approximation
the kinematic condition on the surface of a half-

space taken as the lower half-plane becomes

3 32
'a_t' n(x,t) = - gfa—y' W(X,O,t) . (4‘2)

Boundary conditions to be satisfied on the
interface arise from the components of the stress
tensor. For a fluid that occupies the lower half-
plane the Tyy-component of the stress tensor satis-
fies

2

9
Tg ——a = n(x,t)
X

TYY B 3 2%/
1+ [si-n(x,t)]

on the surface, and the Ty

(4-3)

x-component satisfies

T, =0 .

ox (4-4)

TABLE 1

BASIS FUNCTIONS FOR VARIOUS ACCELERATIONS

Form of the F G G
Accelceration 1 2 1 2
g"(v) = g, cos (ut »’Exo) sin{ut /Ego) cosh(vt »"Ego)

t 2r-2
g*(t) = zo( -7 = o
2r

with T = 1 - &

2 3 (ﬂ m)

T withr-l-% withT=1 - &

sinh(vt JEgO)

11/2 J 1 (%2 lﬂg Tr) 11/2 I (!1 /{g Tr) 11/2 1. (v T /;g Tt)
Al o 1 \r - o 1 T 0
2 2r

2r

t
T with T 1~,—r-
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Entering the expressions for the components of the

stress tensor into Eqs. (4-3) and (4-4) yields

Tﬁ(t)
S 8x2 *
3/2 2
1+ [%; n(x,t)]zl

(4-5)

-
- p+2u %¥ + Adiv V = I

where p and A are the viscosity coefficients, and

=+t x—=0 . (4-6)

Upon setting the arbitrary function of time equal
to zero in the pressure field expressions of Eq.
(2-19) and assuming an incompressible fluid so that
div ; = 0 in Eq. (4-5), we find upon combining
these two equations in the linear approximation
that

92 3%

P 5r5- V(x,0,t) - pg* n(x,t} + u Y(x,0,t)
9tox 2
9x3y

33
-3 y(x,0,t) | =0 (4-7)
ax

is the linear boundary condition that comes out of
the Tyy-component of the stress tensor for zero
surface tension. Also, Eq. (4-6) becomes

3 3
¥ x0,t) = L—u(x,0,0) (4-8)
ay 9x 3y

in the linear approximation.

To solve the boundary value problem defined
by Eqs. (4-1), (4-2), (4-7), and (4-8) we introduce
the Laplace-Fourier transform

V(k,y,s) -f dt e'“fw dx e y(x,y,0)

o -0

(4-9)

Let v = u/p be the kinematic viscosity; then the
Laplace-Fourier transform of Eqs. (4-1), (4-2),

(4-7), and (4-8) for a system at rest initially

produces the following relations:
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4 2
vy, - (34 28) L5 vaay,9
dy dy
2
+ (k4 v 2 iy =0 (4-10)
s nk,s) - n(k,0) = ik - W(k,0,8) (4-11)

2
(iks/V) ¥(k,0,5) + (g*/V) n(k,s) + ik S ¥(k,0,s)
dy

+ iK% y(k,0,8) = 0 , (4-12)

and

&

2d
dy3 w(k,O,X) = -k 'a-}-;‘«l’(k,O,S) (4'13)

The fourth-order ordinary differential equa-
tion that appears in Eq. (4-10) is of the so-called
Orr-Sommerfeld type. Its general solution can be
written as

v(k,y,s) = Al(k,S) exp(ky) + A,(k,s) eXP(W{ + -\s;)

[ 8
+
[~
N

<

Ag(k,s) exp(-ky) + A,(k,s) exp(-)’
(4-14)
For a half-space in the lower half-plane we take
A, =0= A4 for bounded solutions at infinity and

3
write

V(k,y,s) = A(k,s) e 4 A (k,s) o (4-15)

with
(4-16)

At this point three quantities, namely, Al(k,s)
and Az(k,s) in Eq. (4-15) and n(k,s) remain to be
found. Entering Eq. (4-15) into Eqs. (4-11)-(4-13)
gives three algebraic equations for their determina-
tion. It follows from Eq. (14-13) that



A (k,s) = —=——= A, (k,s) , (4-17)
2V Z,, 3

k
and Eqs. (4-11) and (4-12) become

s n(k,5) - (ko) = (1K) [k A (K,5) + K Ay(k,s)]
(4-18)

and

(g*/v) n(k,s) = (- ik) (%-+ kz) [Al(k,s) + Az(k,sﬁ

s 1K AL K,8) + K Az(k,s)\ (4-19)

Upon resolving Eqs. (4-17)-(4-19) the Laplace-

Fourier transform of the interface displacement is

found to be given by

s ]
ol

Also, the Laplace-Fourier transform of the partial

n(k,s) _ 1
n(k,0} s

(4-20)

derivative of the interface displacement with re-

spect to time is

s n(k,s) - n(k,o0)

- K g nik,0)
= 3 . (4-21)
k4[<2+iz A e Sl e
vk vk v

The space-time response of the interface dis-

placement and its time derivative can be determined
from Eqs. (4-20) and (4-21) by using the inversion
theorems for Laplace and Fourier transforms. How-
ever, before considering this aspect of the problem
we shall discuss the application of the DNS formula-

tion presented in Sec. 2.3 to this same problem.

4.1.2. Application of the DNS Formulation
As indicated in Sec. 2.3 the DNS formulation

provides a unified approach for the treatment of
Taylor instability initial value problems for both
viscous and inviscid fluids. In contrast to the
stream function method of Sec., 4.1.1, where it was
necessary to solve a fourth-order differential
equation, only second-order differential equations
need to be solved in the DNS formulation. We now
demonstrate this for the half-space problem.

We start from the complex Fourier transforms

of Eqs. (2-57) and (2-59), which are

32 2
_"f P(k,)’,t) -k P(k,)',t) =0 s (4'22)
3y
3 ik 32
Nt U(k,)’:t) = = P(k,)',t) +V)|— U(k,)’,t)
t o] 3 2
Yy
2
-k U(k:)',t)] ’ (4-23)

and

L

3 -
-—t-V(k,)'»t) - - a)’

O |~

2
Pk,y,t) + 2 vik,y,t)
%

- k% v(k,y,t) (4-24)

The solution of Eq. (4-22) of interest for the
lower half-space problem is

PU,y,t) = A (1) & (4-25)
with which Eqs. (4-23) and (4-~24) become
3 ik ky |22
= ulk,y,t) = == A (k,t) e +v|—5 u(k,y,t)
9t p 1 5 2
4
2
-k u(k,y,t)] (4-26)
and
3 X X 92
= vk,y,t) = - = A (k,t) e + V| v(k,y,t)
t p 1 3 2
y
2
-k V(k,y,t)] (4-27)
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In this formulation the kinematic condition on

the interface is used in the form

S0 = v, (4-28)

the boundary condition from the Tyy—component of
the stress tensor is

3
P(x,0,t) - pg* n(x,t} - 2u 'a_y'v(x’o:t) =0 ,
(4-29)

and the boundary condition from the Tyx—component

of the stress tensor is

3 3

3y u(x,0,t) + 52 v(x,0,t) = 0 (4-30)
The Laplace transforms of the complex Fourier

transforms of the x- and y- components of the line-

earized Navier-Stokes equations obtained from Egs.

(4-26) and (4-27) are

ik

p

s ulk,y,s) - ulk,y,0) = 1K o (k,s)

32 2
+ V[—5 u(k,y,s) - k" u(k,y,s) (4-31)
3y
and
s V(ky,8) - v(k,y,0) = - 4 (k) €
32 2
+ Vi—5 v(k,y,s) - k" v(k,y,s) (4-32)
oy

If the fluid is at rest initially, then Eqs. (4-31)
and (4-32) reduce to the following one-dimensional,
inhomogeneous scalar Helmholtz equations for the
Laplace-Fourier transforms of the x- and y-compo-

nents of the velocity vector;

32 s 2
;~§'U(k,y,s) -yt K) ulky,s)
y
= - %% A (k,5) (4-33)
and

32

2
2 vioy.s) - (i+ k) viy9) = Ko s) o
dy v pv "1

(4-34)

With the quantity K, as defined in Eq. (4-16), the
solutions of Eqs. (4-33) and (4-34) appropriate for
a half-space in the lower half-plane are

utk,y,s) = € (k,s) e + 2 (k,5) & (4-35)
and
V(k,y,5) = Cok,s) e - X (k,5) & (4-36)

The quantities Cl, Cs, and Al in these last
two equations are found by satisfying the Laplace-
Fourier transforms of the kinematic and boundary
conditions, together with that of the continuity

equation, which is

3 .
3y v(k,y,s} = 1 k u(k,y,s) (4-37)

Upon entering Eqs. (4-35) and (4-36), this relation
leads to
Cs(k,s) = (ik/K) Cl(k,s) (4-38)

The Laplace-Fourier transforms of the kinematic and
boundary conditions read

A (,8) = P(k,0,5) = pg* n(k,s) + 2 3 v(K,0,5)

(4-39)
g; u(k,0,s) = ik v(k,0,s) , (4-40)
and
s n(k,s) - n(k,0) = v(k,0,s) (4-41)

These last three equations become



2
- X
A (k,5) = pg* n(k,s) + Zu[K C4(k,8) - = Al(k,s)] :

o
(4-42)
K C,(k,s) + i’ A, (k,s) = ('k)[ C,(k
1 (ks s Mlkes) = (4 3(k,8)
- %;-Al(k,s)] . (4-43)
and
s n(k,s) = nk,0) * Cylk,s) - oA (k,s) . (4-44)

The same result for the Laplace-Fourier transform
of the interface displacement as that quoted in
Eq. (4-20) is obtained by solving Eqs. (4-38) and
(4-42)-(4-44).

4.1.3. Inversion of the Laplace Transform

In Secs., 4,1.1 and 4.1.2 the stream function

and the DNS formulations were used to determine

In this result the quantities q;» i=1, 2, 3, and

4 are the four roots of

4 2 g*
q, + 2q, - 4q. + 1 + =0
i i 1 v2 k3

, (4-46)
and the denominator is the cubic

_ 3
D' (q;) —(4 q; + a; - 1) (4-47)
To establish Eq. (4-45) from Eq. (4-21) the
following procedure can be used. First write the

right-hand side of Eq. (4-21) as

n(k,0) (-k/v3)g*

2
2 2 3
(s + vk© + vk ) 4k ‘] 2 kg*
v2 - = ¥s + vk” + v2

\Y

To find the inverse of this expression multiply the
inverse of the following expressions by exp(—tvkz);

n(k,0) (-k/v¥)g*

1 ) (4-48)

2
- gr(vk’)
- o) (- %) £

CNI =

2
! 2! 3 3 k 2 S S g*
s + vk _41( /S—+kg2 (Vk)[(—2-+l) -4 F*‘ 23]
AY

v? ~

v

the Laplace-Fourier transform of the displacement
of the surface of a half-space of a viscous fluid
Also,

the Laplace-Fourier transform of the time derivative

subjected to a time-independent acceleration.

of the surface perturbation is given by Eq. (4-21).
If this equation is inverted back into the time
domain, the time derivative of the Fourier transform

of the surface displacement is found to be

We now invert the following quantity and replace t
with vkzt in the result

2
K\ g*(vkd) 1

nt,0) (-5
vz) K s+ 12 - a5 e B

vz k3

4
2o ntot) = ko) (£) 3B

(4-45)

2
VK t(qi'l) erfc(— CA /\)kzt)
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Let

D) =a' + 2% - 4a+ 1+ &= ,  (4-49)

v k

and let Q3 be a root of D(qi) = 0, as indicated in

Eq. (4-46). Then we can write

R T S e

i=1 i=1

(4-50)

where the derivative is given by Eq. (4-47). The
inverse Laplace transform of the reciprocal of the

factor V5 - q; is

#{ * q; exp (qi t) erfc (— qi/t_.)

in terms of the complimentary error function. Con-
sequently, the Laplace transform inverse of Eq.
(4-50) is

%2 o) (2~ %) (2 %) ° (4-54)
% = (-9 (s : %) (% - %) (4-55)
and

%" (3~ ) (% } ) (4 %) (4-56)

it follows that

4

LW

i=1

INVERSION

:§ : 1
0 =0 (4-57)
D (q.
i=1 (1)
Thus, we have
4
q. tq.,
e o erfc(q/E) (4-58)
2
i=1 i

*i D'?‘ili) oxp (3 t) exte (-q; /%)

i=1

Because we can also write

1
) = . (a_—qu s (4-51)
1I=I (q -4 ) 1=1
where
@ = =7 , (4-52)
b’ (ay)
or
. 1 (4-53)
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and the inverse of the right-hand side of Eq. (4-48)
is
4 2, 2
* q. vk“tq;
n(k,0) (- %Y) E —— e 1 erfc(— q.»’\)kzt) .
> (&) ‘
i=1 *

Multiplying this expression by the exponential
exp(- tvkz) gives the result quoted in Eq. (4-45)
for the Fourier transform of the time derivative of

the displacement of the surface.

4.2. Solution for a Viscous Fluid Sheet with
Constant Acceleration

In the linear approximation of the stream func-

tion formulation we have to solve

o g—{ vy = Wil (4-59)



to determine the space-time response of the upper
and lower surfaces of a viscous fluid sheet. The

pressure field can be written as

2
3
P(x,y,t) = Py + P 3p5x¢ V(x,y,t) - gty
2> 3>
- ¥ N Y(x,y,t) + 3 Yx,y,t) (4-60)
ax 3x3y
and
52
P(X,y,t) = py + 0 3057 V(x,y,t) - pg*(y - H)
33 33
- U=z V(x,y,t) + 5 V(x,y,t) (4-61)
X 9x9
y

In Eq. (4-60) the pressure at the mean position of
the lower surface is Py» and Py is the pressure at
the mean position of the upper surface in Eq.

(4-61).
sure field it is possible to put the T

With these two expressions for the pres-
-component
of the stress tensor for an incompressible fluid,

namely,

v

T =-p-2U§;

vy - (4-62)

into two alternative forms that can be used in the
boundary conditions on the upper and lower surfaces
of the fluid sheet.

The kinematic condition on the upper surface

at y = H + nl(x,t) is
3 3?
K nl(x’t) = V(X’H’t) = - W ‘P(X,H,t) F) (4'63)

and that on the lower surface at y = nz(x,t) is

2
3 ]
'é—t' ﬂz(X,t) = V(X,O,t) = - —aXT}’ W(X.O,t) » (4"64)

The T

of the stress tensor leads to the boundary condi-

both in the linear approximation. -component

tion

2
oz V(%,0,t) = g0, (x, 8)

3 3
s v [ L v,y - 2
ax axdy

5 V(x,0,t) (4-65)

on the lower surface and to

2
3
'a—ta—; w(X,H,t) = g*nl(x:t)

3 3
s ueon,n - 2 wcx,H,t)] (4-66)
3x Ixay
on the upper surface. The Tyx-component of the
stress tensor becomes
33 a3
__—3' ‘ll(x,O,t) = 2 ¢(X,0,t) (4"67)
y 9x" 3y
on the lower surface and
a3 3
—z V(x,H,t) = Y(x,H,t) (4'68)
3 2
y ax"dy

on the supper surface.

The solution of Eq. (4-59), subject to the
kinematic and boundary conditions of Eqs. (4-63)-
(4-68), can be determined by the method of multi-
ple integral transforms. We use a Laplace transform
on the time coordinate and a complex Fourier trans-

form on the x-coordinate, namely,

=00

V(k,y,s) =f dt e'Stf ak e y(x,y,t) . (4-69)
[o)

The Laplace-Fourier transform of Eq. (4-59) is

4 2
d S 2\ d

UJ(k,Y,S) = (_‘ + 2k K w(k,Y,S)
dyZ v ) dyz

+ k2 (kz + %) v(k,y,s) = 0 (4-70)

The general solution of this equation is

Vk,y,s) = A (K,) €Y v a0k, e v ask,s) &

+ Ay (k,s) e XY , (4-71)

2

where K° = kz + s/v.
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At this point the problem entails the calcula-
tion of six quantities. These are the Ai’ i=1,
2, 3, and 4 in Eq. (4-71) and the Laplace-Fourier
transforms of the displacements of the upper and
lower surfaces. By taking the Laplace-Fourier
transforms of the kinematic and boundary conditionms,
i.e., of BEqs. (4-63)-(4-68), six relations from
which the remaining six unknowns can be found are
obtained. This reduction leads to an algebraic
problem involving six inhomogeneous algebraic equa-
tions whose inhomogeneous terms contain the Fourier
transforms of the arbitrary initial perturbations
of the upper and lower surfaces of the fluid sheet.

The Laplace-Fourier transforms of Eqs. (4-63)-

(4-68) give the following six relations:

.4
sny (k,s) - n,(k,0) = ik Fi2 W(k,H,s) , (4-72)
. d
sny(k,s) - ny(k,0) = ik g ¥(k,0,5) , (4-73)
a? 2
(ik) —_2' ‘P(k,O,S) + (ik) K ‘P(k,O:S)
dy
*
+ &0,k =0, (4-74)
a2 2
(ik) —-E'w(k,H,S) + (ik) K” ¢(k,H,s)
dy
+En s =0, (4-75)
p 0 -ke-kH ke K
0 P -k k
gt/v 0 alxkH e (k2ekye”
A=
0 g*tl Koak? k2+k2
0 0 PR _2xSe K
0 0 23 -2’
—
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kH

3
d 2d
-y 'l‘(k,o,s) = -k —'P(k,o,s) » (4'76)
d 3 dy
Yy
and
43 24
S5 U(k,H,s) = - k° L= (k,H,s) (4-77)
d >4
Y
If we define the quantities Xj(k,s) by
X;(k,8) = (1K) Aj(k,8) , 1S5 <4, (4-78)

and enter Eq. (4-71) into Egs.

obtain the algebraic set

(4-72)-(4-77), we

n, (k,s) nl(k,O)
n,(k,s) n,(k,0)
Xl(k,s) 0
A - . (4-79)
Xz(k,s) 0
X (k,s) 0
X4(k,s) 0
where the matrix A is given by
ke ke
-X K
2x2eM 2x2¢~H
2K% 2K2 80
k2 gtk ™
K (k2+k%) -K(K2+k?)




The solutions of Eq. (4-79) for the Laplace-
Fourier transform of the displacement of the upper
surface of the fluid sheet can be written in the

form

v >

nl(k,o) [5 Gll(k,s) + E‘M—l(k’s)] - nz(k’o) 'g\;:'r31(k’s)

nl(k.S) =

The determinants in this result are defined by the
relations that follow:

2.2 .
(k“+K )ekH (k2+K2)e K g2k
k20K2 k2+K2 2K2

611 (k’ 5) =

3, kH 3.-kH 2.2
2k’ -2k% K(k2+k2)
3
2 -2k K(k2+k?)
-k k X
2.2 .
(k“+K )ekH (k2+K2)e L 2K2eKH

My, (k,s) =
2k3ekH _2k3e-kﬂ K(k2+K2)eKH

3
2k 23 K(k2+k2)
-kekH ke_kH k™
IO S P L o P

Ty (k,8) =
213 KH ek K2ek?)
23 28 K(k2+k2)
ke M e K ke
- k X

DSI(k’S) =
ISR -2k3e M K2k
%> -2%3 K(k%+K2)

2
2, (g* *
8, (k,8)s% + (%-) Dy (k,s) + s & [631(k,s) - Dzl(k,sﬂ

G S

-K(k%+Kk2)

ZKZe-KH

K(kZek?y MM

-K(k2+k?)

21<Ze-!(H

KxZekZye

KKk

Ke-KH

K

-K(k2+K2)e-KH

k244

(4-81)

(4-82)

(4-83)

(4-84)

(4-85)
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-k k -K K
(k2+K2)ekH (k2+K2)e'kH ZKZeKH 2K2e-KH
631(](’5) = H) (4"86)
2k K _2kSe K k22 ki)
2%° -2k3 K(kZ+k%) -K(k2+k?)
and
el ke K ke’ ke
K2ek2 kK2 2K 2k
D1 (ks8) = w | (4-87)
k%M 2k ¥ k(k2+kHe™  k(PkDe”
25 -3 K(k2+k2) -x(k2+k3)
A property of these six determinants to be used where nl(k,s) is given by Eq. (4-81).
later is that they are all odd functions in the As an explicit example of this general result
Fourier transform variable k, that is, for arbitrary initial perturbations on both surfaces
of the fluid sheet, consider initial cosine pertur-
611(-k,s) = - Gll(k,s) B (4-88) bations on each surface with a phase difference €.
That is, suppose that the initial displacements on
M31('k’s) - Msl(k’s) , (4-89) the upper and lower surfaces are given by
nl(x,o) =3, cos(kox + €) (4-95)
T31(-k,s) = - T31(k,s) s (4-90)
) and
031('k:5) = - DSl(k’s) E] (4'91)
nz(x,o) = a, cos(kox) . (4-96)
631(-k,s) = - 631(k,s) , (4-92)
The complex Fourier transforms of these initial dis-
and placements are
_ ie -ie _ _
Dy, (-k,8) = - D, (k,5) . (4-93) N k,0) = a2, [e SCk+ky) + e 77 8(k ko)] (4-97)

The space-time response of the displacement of and
the upper surface can now be computed with the in-
version theorems for Laplace and complex Fourier ny(k,0) = az[é(k+k°) * 6(k"ko)] : (4-98)
transforms. We obtain directly the integral rep-

Upon combining Eqs. (4-81), (4-94), (4-97), and

resentation
. (4-98), carrying out the integration over the
) C+io
. Fourier transform variable k, with the use of the
n(x,t) = o= | ak e iXK 1. ds e%s n, (k,s)
v 2T 271 s e nlk, shifting property of the Dirac delta function, and
- c-ie making use of the odd properties of the fourth-

(4-94) order determinants expressed in Eqs. (4-88)-(4-93),
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we find that the space-time response of the upper
surface of the fluid sheet can be represented by

the Bromwich integral

1 c+ie ts
- = ds e
n; (x,t) ZWif —G(RO,S) Ial cos(kox+e)

c-iw

v [s 800+ By k,9)]

g*
- a, cos(kox) 3_'T31(ko’5) I (4-99)

in the complex s-plane. Here we have introduced
the definition

] 2, sg*
8(k,,s) = 6, (k ,5) s + £ [631(k°,s)

-0y G| (%1)2 Dy (ky»s) . (4-100)

4.3. Interface Motion between Two Half-Spaces

of Incompressible, Viscous Fluids under Con-
stant Acceleration

To determine the space-time response of the
interface between two viscous fluids under constant
acceleration we solve the two uncoupled partial
differential equations of the stream function for-
mulation in the linear approximation. In Region
(1), defined by the inequalities -® < x < ® and
y > o, we have

2

3 _ 2 2

and in Region (2), - < x < © and y < o, we have

2 2

3 _ 2
Py T v wz = u2 v wz . (4-102)

The interface kinematic condition is

%{ n(x,t) = - 5%;; wl(x,o,t) (4-103)
The four required boundary conditions for this
problem arise from the continuity of the T - and
Tyx-components of the stress tensor and the conti-
nuity of the x- and y-components of the velocity
vector. By using pressure field expressions of the
form given in Eq. (4-60) and stress tensor compo-

nent expressions of the form given in Eq. (4-62)

for each of the two regions, we find that the conti-
nuity of the Tyy-component of the stress tensor on

the interface leads to the boundary condition

2
3
Py Fe5% V1 (X,0,1) - 0,8% n(x,t)

33 33
H, ™% ‘l‘ (X,O,t) + U ——‘—"P (X,O,t)
1 8x3 1 1 axay2 1

2
)
= 92 mwz(xm;t) - 02 g* nix,t)

8 8°
- U ‘P (X,O,t) + U lP (X,O,t) ’
2 ax3 2 2 axayz 2

(4-104)

in the absence of surface tension. The continuity
of the Tyx-component of the stress tensor leads to

the boundary condition

3> 23
Ul ——3"1'1(’(,0,?1) = WI(X,O,'C)

dy axzay
3 3
3 3
= uz [-—3'szx,0,t) - T wz(x:ost)] .
3y 9x 9y
(4-105)

The continuity of the x-component of the velocity

vector requires that

32 a2
'—2' ‘l’l(x:opt) = ——z"l’z(x:O,t) ’
3y 3y

(4-106)

and that of the y-component of the velocity vector

gives the boundary condition

2 32

soay ¥ (x:001) = 52 ¥y(x,0,0)

5237 (4-107)

To solve the initial value, boundary value
problem represented by Eqs. (4-101)-(4-107) we in-
troduce the Laplace-Fourier transforms of the scalar

functions wi’ defined by
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¥; (k,y,9) =/ dt ™% ...

o

® »
/ ax ey (x,y,0), (=1,2)

-0

(4-108)

and of the interface displacement by

n(k, s) =/ dt e'“f dx ¥ nex,t) . (4-109)

I -

For y > o, the Laplace-Fourier transform of Eq.
(4-101) is

4 2

2

& ntors - (3« 5) sy oy
dy 1/ dy

+ kz(kz . %—) ¥ (Ky,s) =0, (4-110)
1
and for y < o, that of Eq. (4-102) is
4 2
d 2 d
S hrs) - (3% )5 v 00y9)
dy 2/ dy
* kz(kz + S—)w (k,y,s) = 0 (4-111)
v, | V2

To ensure bounded solutions at infinity we take the

solution of Eq. (4-110) in the form

-ky Ky
‘lil(k,)',s) = Al(k,S) e + Az(k,s) 4 H (4‘112)
and that of Eq. (4-111) in the form
Ky Kyy
wz(k,y,s) = Bl(k,s) e’ + Bz(k,s) e , (4-113)
where
2_.2 s -
Ki =k +5- » (i=1,2) (4-114)

The problem can now be reduced to a set of
five inhomogeneous algebraic equations in which the

unknowns are Al and A2 in Eq. (4-112), B1 and B2
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in Eq. (4-113), and n(k,s), the Laplace-Fourier
transform of the interface displacement. To accom-
plish this reduction we first take the Laplace-
Fourier transforms of the kinematic and boundary
conditions given in Eqs. (4-103)-(4-107). These
five transforms read as follows:

s n(k,s) - n(k,0} = (ik) g-);\bl(k,o,S) , (4-115)

. 3
P, sik ¥;(k,0,5) + p) g* n(k,s) + p; ik” ¥, (k,0,s)

2
3 -
+ ik ;y—z ¥, (k,0,s) = p, sik y,(k,0,s)

3
+ 0, g% n(k,s) + u, ik™ ¥,(k,0,s)
2

sy, O
+ 112 ik y wz(k,o,s) ’

(4-116)

33 29
N b ANURIDRE S AN U
y

3
= u, [—:—y—s Y, (k,0,s) + K2 g_y u;z(k,o,s)], (4-117)

a2 9%
'__2' U’l (k’o’s) = _2 le(k,O:S) > (4'118)
3 3

y y

and
2y (k,0,8) = & ¥.(k,o0,5) (4-119)
Jy T1'*e > 3y T2+ 0

Upon entering Eqs. (4-112) and (4-113) into Egs.
(4-116) -(4-119) we find that

(0; - py)
A, (k,s) EEE g* n(k,s)
A2(k,s) 0
A, = R
Bl(k,s) 0
Bz(k,s) 0

(4-120)

where the matrix Av is given by



F 2,2 2 2,2 2 T
“1(k +Kl) 2uy Ky Hy (k *Kz) - 21K,
3 2,2 3 2...2%
2u k WK, (k «i2) 2uk HK, (k +K2
A, = . (4-121)
k K1 k K2
2 2 2 2
k K1 -k _Kz
- J
Also, Eq. (4-115) becomes Combining Eqs. (4-122)-(4-124) produces
[ ] : 4, utk,0)
s n(k,s) - n{k,0) = (-ik) [kA,(k,s) + K. A, (k,s) . nk,s) = —
1 12 sb, + (Kl b 23 - kAv,ls) ("1 °2)g*
(4-122)
(4-127)
Solving Eq. (4-120) for A1 and Az yields
as the Laplace-Fourier transform of the interface
displacement. A little algebra establishes the
A, (k,s) = Bo,15 (P17 P2, (k,s) (4-123) identit
1 ’ = A\’ (—ik) g n ’ y
and Ky Bu,a3 ~ kB, y3=s A, o (4-128
here
A Py - P v
Ayls) = - 2B AL g nk,s) L (4-129)
v )
B, 5= K K Ky |y Ky + oy Ky - k(pl+p2)l . (4-129)

where the two additional determinants are

2. .2 3 2.2
MK (k * Kl) 2u,k oKy (k "Kz)
K, k K,
= 4-125
By 13 , (4-125)
2 2 2
K} -k K]
and
3 3
2u.k 2 ( 2)
1 Uzk usz k +K2
k k K
B .= 2 (4-126)
v 2 .
k _k2 _Kg
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Consequently, the Laplace-Fourier transform of the

interface displacement becomes

A
n(k,s) = 4k:0) v

b, + 8, 5 ("1"’2)3*

and that of the time derivative of the interface

(4-130)

displacement is

s n(k,s) - n(k,0) = 0 8 5 (pl"pz)g*
’ F] - -
B, B, (pl pz)g

. (4~131)

By applying the inversion theorems for the
Laplace and Pourier transforms the following inte-
gral representatives for the space-time response
of the interface and its time derivative are ob-
tained:

nex,t) = ;—" ak e XK g oy L.
-00
c+im ts
A e
1 ds v
.= = - (4-132)
271 s [Av + Av,S(pl oz)g*]
c-iw
and
3 1 -ixk
s N0 = - 5= [ dk e n(k,0) ...
=00
. ts
c+ico (p -p.,)g*A e
. o ds A2 v.3 — . (4-133)
mi [% v,3 ("1"’2)3]

c-i=

For an initial cosine perturbation, for which

n(k,0) = ma_ [G(k-l-ko) +»<s(k-ko>] , (4-134)

we find that
a cos!kox)
n(x,t) = 71 vee
ts
Av(ko,s) e

e R COIGaH

c-iw
and (4-135)

a, cos(kox)

3
Hn(x,t) e R

o (Py-pg)ety 5k, 5)
| R B e

c-ie
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are the Bromwich integral representations of the

interface displacement and its time derivative, re-
spectively.
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